Jack-Bauer April 2011

Infitec / Dolby3D COLOR CORRECTION
You need a PC with a graphic card with dual outputs to drive the two projectors (*).
Affinity or horizontal span mode is required as the whole process uses a 3840x1080 virtual screen . Other resolutions such as 2560x720 are also supported, as long as two 16:9 screens are packed together horizontally.
If your video is of the side by side type, you can use your favourite Video Player (I use Zoom Player) along with the ffdshow video filter. No need for a specific player. Full screen video is playing across both screens and the graphic card driver splits the video and sends each part to the matching projector.
You also need to get the last version of AVIsynth and the ddcc (or t3dlut) plugin.

Color correction is done through an AVIsynth script called by the ffdshow video decoder (more on that later). LUTs (lookup tables) are used to do the correction.

Basic script is very simple. Example for a half side-by-side movie:

(rgb3dlut() is a function of the ddcc.dll plugin.)
LoadPlugin("C:\Program Files\AviSynth 2.5\plugins\ddcc.dll")

L = crop(0,0,960,0)

R = crop(960,0,0,0)

R = R.rgb3dlut("D:\work\TABLE1.RGB")

L = L.rgb3dlut("D:\work\TABLE2.RGB")

stackhorizontal(R,L)

The real work begins when you want to create your own TABLE1 and TABLE2 lookup files.

(*) Personally, I am using only one output plus a Matrox triplehead2Go digital to do the splitting externally. That gives me the ability to use the overlay and reclock. That is no judder, no tearing, no frame lag. Everything is in perfect sync.

Color LUTs are created using 5x5x5 3D color cubes and trilinear interpolation (125 vertices).
One cube per eye (both in a single file). See Appendix at the end of document.
Thus, each discrete color is converted using:

R' = a11 R + a12 G + a13 B

G' = a21 R + a22 G + a23 B

B' = a31 R + a32 G + a33 B

For further explanation, please refer to http://www.jumbovision.com.au/files/Infitec_White_Paper.pdf
Calibration parameters depends upon projector type and more specifically upon the lamp type. A couple of hour's calibration process is necessary to get the correct parameters. This is done only once in a projector's lifetime, in theory. In real life, recalibration every 1000 hours is recommended.

Calibration is done by sending color patterns on screen and editing routines. No glasses are required for calibration, as the glasses are supposed to make a demux of the wavelengths, not to change them.

Two basic steps are necessary:

1. Create a profile for each filter.

2. Use the profiles to build up the LUTs.

Before ever trying to create profiles, screens must be normalized in terms of black level, gamma and contrast. As patterns use desk colors and the videos use VMR9 or OVERLAY, both kinds must have the same greyscale curve.
If you use VMR9 for your videos, it is about the same as the windows desk colors. Skip the following.

If, as I do, you use the overlay mixer, it must be calibrated to match the desk.
Use gamma.jpg full screen for the desk and the AVS script below for the video:

ImageSource("D:\work\gamma.jpg",end=10000)
1. Creating profiles
Installation:
Copy the _Dolby calibration directory to your hard drive (best place should be in C:\Program Files). Put a shortcut of Dolby3D.exe on your desk.

If you want to try my own calibration settings, create a working directory and copy my dolby.8 and dolby.125 files. You are all set.
Tip: You can edit my dolby.8 file and see if your lamps comply with the correction I have done. Although this is a coarse tweaking, these settings gave me an almost perfect color matching. Colors matching becomes absolutely perfect when I use dolby.125.
(I use regular 200W UHP lamps and dolby3D glasses)

[image: image1.jpg]
To do the calibration, two steps are necessary (*).
step 1. Calibrate all 8 primaries/secondaries.

Create a 8-vertex profile (Start from scratch)
Click on [EDIT 8] to edit the profile.

You get: Black(forget it) Red Green Blue Yellow Cyan Magenta White
(*) When you use either color editors, calibration pattern will show on your screen(s). If your virtual screen ratio is less than 2 (no horizontal spanning), patterns will show side by side on the same projector (debugging). You can use that mode on a single screen to get familiar with the program.

If your virtual screen ratio is more than 2 (horizontal span), patterns will spread across both projectors. Left pattern and buttons on one projector, right pattern on the other.

If your patterns do not show at the right place, play with the Xshift number in the dolby.ini file.

[image: image2.png]

Calibration is done in 3 passes:

pass 1.
One projector with L filter, the other with NO filter.
Use [FILTER ON] / [NO FILTER] buttons
Tweak the colors with the spinners (you can use the mouse wheel)

pass 2.
Same thing for the other projector.

pass 3. Put both filters on and try to match colors left and right.

You may want to chose a number greater than 100 for the REF colors
in order to increase brightness, but color matching will be less accurate.

If you cannot match colors, make them equally bright at least.

This preliminary calibration is coarse and will be refined in the next step.

Tip 1:
To increase brightness (at the expense of color accuracy), you may

want to normalize:

Make sure that at least one number is 255 for a given line.

For example, should you have for red: [155,0,30] [245,70,0], you would like to use [160,0,31] [255,72,0] instead.
Tip 2: At this stage, you can decide to go further or not in refining the values. If you want to build the LUTs, first you have to convert your 8-cubes, as the LUT generator only accepts 125-cubes.

Step 2. Calibrate 125 colors.

Click on [8 => 125] then [EDIT 125]
[image: image3.png]

Calibrate/match 125 colors.
Shown pattern is a single 5-vertex segment inside the cubes. Use the 2 spinners at the bottom to select segment. You can change segment orientation with the [R] [G] and [B] buttons.
You can check the grey scale (main diagonal) with the [GREYSCALE] button.
Tip:
To avoid artefacts, I found best to make the grey scale linear (Linearize),
even if this results in grey matching not being perfect.
All along the calibrating process, you can check with real colors by removing the filter from a projector and use the [FILTER ON] / [NO FILTER] buttons. Reference colors are dimmed to simulate filter attenuation. Attenuation value (REF color) is set in main menu.

Note: The [Grid 125] button can be used to build irregular 5x5x5 grids. An idea I had was that logarithmic scale instead of linear was to be experimented. Such as (0, 31, 63, 127, 255) instead of (0, 63, 127, 191, 255). So far I have doubts it is useful.

2. Creating the LUTs
Click on [Build LUTs] and select your profile: Two kinds of LUTs are created: RGB and YUV.
Tip: I found that the needed RGB conversion required by the rgb3dlut routine generates slight artefacts in very dark areas, so I prefer to use YUV tables instead of RGB. You have to get hold of t3Dlut.dll for that but it uses a little more CPU power.
The script will become:

LoadPlugin("C:\Program Files\AviSynth 2.5\plugins\t3dlut.dll")

L = crop(0,0,960,0)

R = crop(960,0,0,0)

R = R.t3dlut("D:\work\TABLE1.YUV",destcs=0)

L = L.t3dlut("D:\work\TABLE2.YUV",destcs=0)

stackhorizontal(R,L)
3. AVS script - usage
The AVS script can be used different ways:

You can create a standalone AVS file and load it into your favourite player or you can embed the script in the ffdshow video filter:
[image: image4.jpg]
RGB script (check RGB24 only)
[image: image5.jpg]
YUV script (check YUY2 only)
You can also import your AVS file (the way I do):
[image: image6.jpg]
If you want to set contrast/brightness, it is best to do that prior to entering the AVS script, in Picture properties for example. Also, DeBand is a good way to eliminate left over artefacts.
APPENDIX

About 3D color cubes
Three primary colors, Red Green and Blue, are used in the computer world to define all 16 millions different combinations (8-bit colors).

So R G and B are independent variables and can be visualized in 3D space geometry, one color per axis. As the range is [0 – 255] for each color, that makes a 255x255x255 color 3D cube. All possible color combinations belong to the inside of the cube.
The color correction process consists in distorting the cube so that each of the 8 original vertices finds a new location inside the original cube. Every original color is then interpolated to get a new location inside the cube. This is called trilinear interpolation.
So all 16 millions colors are corrected starting from the new 8 vertices.
To refine the process, intermediate points can also be used. Instead of having 8 starting points (which are 2x2x2 cubes), you can have 27 or 125 starting points (3x3x3 cubes or 5x5x5 cubes).

Artefacts may be generated as the interpolation is linear, so discontinuity in the slopes is likely to come up with 125-cubes. It would be much better to use some kind of bicubic/spline interpolation but this is beyond my programming skills. That’s the reason why I provided the linear interpolation button for the grey scale. It solves 90% of the issue.
The magic of lookup tables is that there is absolutely no relationship between the entry color and the generated color. So dramatic conversions can be done that way, which are impossible to obtain with regular CMS systems.
Jack
